Ремонт импульсного блока питания компьютера krauler. Питаться, чтобы «жить»: как проверить блок питания компьютера

Ремонт компьютерного блока питания — производить ремонт импульсных блоков питания всегда сопряжено с опасностью поражения высоким напряжением, поэтому прежде чем начать его починку тщательно подготовьтесь к этому. Примите все меры исключающие возможность попасть под высокое напряжение. Электролитические конденсаторы способны долгое время сохранять заряд и пока вы их не разрядите или они через некоторое время сами не разрядятся, избегайте прикосновения руками к их выводам даже после отключения питающего напряжения. Так же как один из способов предосторожности и во избежание еще более нежелательных последствий и сохранения еще рабочих компонентов, нужно изъять предохранитель, а на его место впаять электрическую лампочку на 100 Вт. Теперь если в момент подачи напряжения на блок питания лампочка засветится и погаснет, значит все нормально, а в случае если она продолжает светится и не гаснет, это означает короткое замыкание в цепи.

Минимальный набор инструмента для ремонта:

Хороший паяльник, а лучше два. Один на 40-60 Вт для выпаивания трансов, дросселей, силовых ключей и диодных мостов закрепленных на теплоотводах. Паяльник на 25 Вт, для пайки мелких элементов. Так же потребуется припой ПОС-61, жидкий флюс.
Специальный отсос припоя, но лучше оплетка от экранированного провода, которая прекрасно убирает припой.
Несколько разных отверток.
Кусачки или бокорезы, которыми удобно удалять капроновые хомутики на проводах.
Цифровой мультиметр, можно и стрелочный.
Пинцет.
Электрическая лампочка мощностью 100 Вт.
Чистый бензин (например: для зажигалок) или спирт. Применяется для удаления на плате остатков флюса.

Начинка импульсного источника питания

Порядок расположения выводов коннектора 24 pin и замер напряжений

Умение определять назначения контактов на коннекторе ATX, это нужно для поиска неисправностей в устройстве. Перед началом ремонта обязательно определите значение напряжение дежурного режима +5v SB, контакт на картинке показан синим цветом, а провод идущий на этот контактное гнездо обычно имеет фиолетовый цвет. Если дежурное напряжение имеется, то нужно исследовать значение сигнала POWER GOOD то же +5V, который появится после того как будет включен БП. На картинке площадка контакта показаны в сером цвете, (PW-OK). Что бы запустить ИИП нужно замкнуть перемычкой зеленый и любой из черных проводов. Если напряжение power good имеется, то вероятнее всего блок питания уже работает и необходимо проверить другие напряжения. Имейте в виду, что напряжения на выходе в зависимости от нагрузки, будут иметь разные значения. Поэтому если ваш вольтметр покажет на проводе желтого цвета напряжение около 13 V, не обращайте внимания, при появлении нагрузки произойдет стабилизация до положенных 12 вольт.

В случае возникновения проблем в высоковольтной части источника питания и нужно провести там измерения напряжений, то делать это нужно относительно общей шины, которой является отрицательный вывод диодного моста или точка соединения плюса и минуса конденсаторов фильтра.

Осмотр БП

Первым делом после открытия блока питания, нужно внимательно осмотреть все установленные там элементы на предмет почернения компонентов или подтекания и вздутия конденсаторов, повреждение токопроводящих дорожек, потемнение изоляции дросселей. При наличии пыли — убрать ее, проверить вращение крыльчатки вентилятора, если он заклинен то это и есть причина поломки источника питания из-за перегрева и как следствие вылет диодного моста или дросселя групповой стабилизации. Эти элементы более чувствительны к высоким температурам.
Они наиболее склонны к выходу из строя из-за перегрева.

Начальная диагностика

Перед тем как открывать БП попробуйте его включить, что бы точно знать, что с ним происходит при включении. Правильно определенный диагноз – это половина успеха в ремонте.

Стандартные неисправности:

Блок питания не стартует, нет дежурного напряжения;
Блок питания не стартует, но дежурка имеется. Отсутствует сигнал PG;
Блок питания переходит в защиту;
Блок питания начинает работать, но идет сильный запах горелых деталей;
Напряжения на выходе имеют повышенные или пониженные значения.

Плавкий предохранитель

При осмотре обнаружилось, что сгорел предохранитель, не торопитесь делать замену и снова запускать БП. В подавляющем большинстве случаев сгоревший предохранитель это не виновник поломки, а спасатель от более серьезных последствий. При такой ситуации нужно проверить электронные компоненты установленные в силовой части ИИП, а именно диодную сборку и мощные силовые ключи и их обвязывающие элементы.

Терморезистор

Основным назначением терморезистора является способность менять свои свойства в зависимости от температуры. При включении устройства в сеть возникает высокий пиковый ток, а включенный в цепь терморезистор меняя свое сопротивление шунтирует нагрузку, тем самым обеспечивая ей защиту в виде рассеивания тепловой энергии. В случае превышения сетевого напряжения терморезистор переходит в состояние малого внутреннего сопротивления и проходящий через него большой ток пережигает предохранитель. Другие электронные элементы блока при этом не страдают.

Терморезистор может сгореть в следствии сильных бросков напряжения вызванных грозовыми разрядами или при не правильной эксплуатации БП. Например: пользователь установил переключатель режима работы вместо 220 вольт на 110 вольт. Сгоревший терморезистор сразу видно по его внешнему виду, он становится темного цвета с элементами копоти, а так же может расколоться. Менять предохранитель следует только после того как вы убедились в исправности терморезистора или его замене одновременно с предохранителем, а так же проверке подлежат все остальные компоненты установленные в первичной цепи.

Мостовой выпрямитель

Диодный мост это электронный узел состоящий из четырех выпрямительных диодов соединенных по мостовой схеме. Проверяется он на целостность без выпаивания из схемы путем прозванивания мультиметром в режиме сопротивления в прямом и обратном направлении. В прямом направлении стрелка прибора должна показывать некоторое отклонение, в обратном показывать как обрыв.

Принцип измерения диодного моста очень простой. Устанавливаем отрицательный щуп прибора на положительный вывод, а положительным щупом делаем прозвон по направлениям отмеченных на картинке зеленым цветом.

Электролитические конденсаторы

Сгоревшие конденсаторы легко определяются по внешнему виду, верхняя их часть становится выпуклой, а внизу рядом с выводами возможны подтеки электролита. В этом случае они подлежат безусловной замене на точно такие же или немного превышающие номинальные значения емкости и допустимого напряжения. При неисправности емкостей в цепочке дежурного питания, источник питания включатся будет не стабильно, а лишь с нескольких попыток или не включится вовсе. Пришедшие в негодность конденсаторы в цепи фильтрации приведут к выключению блока питания под нагрузкой или так же самое не захочет включатся при этом будет срабатывать защита.

В некоторых случаях происходит высыхание электролита в конденсаторе и они теряют свои свойства накопления энергии, именно на таких емкостях внешние повреждения отсутствуют. Вот здесь придется выпаивать подозрительные и проверять их индивидуально. Если нет прибора для проверки емкостей, то нужно заменить их все на новые.

Постоянные резисторы

Номинальное сопротивление резистора, особенно зарубежного производства, вычисляются по цветовому коду. При замене сгоревших, обязательно на их место нужно ставить такие же по номиналу сопротивления и . Если резистор сгорел так, что не возможно различить цветовую маркировку и нет под рукой аналогичного БП, то тогда все сложнее. Особенно, если у вас дешевенький блок питания, к которому принципиальную схему добыть очень проблематично. Внизу показана таблица цветовых кодов резисторов:

Стабилитроны и диоды

Проверка этих полупроводниковых приборов производится прозваниванием в обе стороны. Если измерительный прибор показывает обрыв или короткое замыкание, значит элемент неисправен. Так же как и другие электронные компоненты, вышедшие из строя диоды и стабилитроны нужно менять на аналогичные или близкие по характеристикам.

Мощные транзисторные ключи и диодные сборки

Транзисторные ключи и диодный сборки, которые расположены в блоке питания на теплоотводах извлекать лучше всего вместе с радиатором. В первичной цепи расположены мощные транзисторы, один из которых следит за дежурным напряжением, а другие работаю по напряжения 12 V и 3,3 V. Во вторичной цепи установлены диоды Шоттки, выполняющие выпрямительные функции выходных напряжений и так же расположены на радиаторах.

Если после проведенных измерений все транзисторные ключи и диодные сборки оказались в исправном состоянии, то не нужно торопится устанавливать радиаторы на место, пока не проверите все остальные элементы находящиеся в схеме.

Широтно-импульсный модулятор

Если при проведении визуального осмотра широтно-импульсный модулятора не выявлено каких либо повреждений и он при работе не греется, то дальнейшая его проверка без осциллографа практически невозможна. Самое простое, что можно сделать при проверки ШИМа, это замер в контрольных точках по питанию на пробой. Для выполнения данного теста нужен будет мультиметр и данные на микросхему ШИМ. Проверку модулятора нужно делать когда он выпаян из платы.

Дежурное напряжение и POWER GOOD

А вот немного другая ситуация: плавкий предохранитель не перегорает, все находящиеся на плате элементы находятся в рабочем состоянии, тем не менее устройство не стартует. При таком раскладе сначала необходимо проверить 5-ти вольтовое напряжение в точках +5VSB и PS_ON. В случае отсутствия на каком либо из этих контактов напряжения, а возможно есть большое отличие от штатного, это значит появились проблемы в цепях трансформатора, формирующего дежурное напряжение вспомогательного преобразователя или как вариант выход из строя ШИМ-контроллера и его элементов обвязки.

Возможные неисправности дросселя

Основные причины выхода из строя дросселя это его перегрев в следствии отсутствия принудительного охлаждения, или ошибок изначального конструирования самого источника питания. Сгоревший дроссель групповой стабилизации определяется визуально по внешнему виду эмаль-провода. Менять его нужно на точно такой же, а в случае если вы решили изготовить другой самостоятельно, то тогда следует заменить и ферритовое кольцо, прежнее из-за высокой температуры могло изменить свои свойства.

Трансформаторные обмотки

Разберите блок, снимите плату и разрядите конденсаторы сетевого выпрямителя лампой накаливания.

Шаг 1

Начинаем с внешнего осмотра. На этом этапе выявляются вздутые конденсаторы, сгоревшие элементы схемы – варисторы, резисторы. Также нужно внимательно осмотреть плату с обратной стороны для выявления плохой пайки или подгоревших участков. Обнаруженные детали заменяются, плата очищается и пропаивается. Соблюдайте полярность при установке элементов.

Проверьте, насколько легко вращается вентилятор охлаждения, зачастую именно он является причиной перегрева блока.

Шаг 2

Проверяем сетевой предохранитель, диоды моста выпрямителя. Если предохранитель сгоревший, в цепи есть короткое замыкание, которое нужно найти и устранить. Для этого проверяем отдельно каждый диод моста выпрямителя. Помните, диод может быть не только пробит, но и иметь незначительную утечку в обратном направлении – при проверке отпаивайте один контакт элемта.

Исправный мост должен иметь бесконечное сопротивление на входе. На выходе моста, при подключении тестера, сопротивление должно измениться от низкого до высокого. Это происходит из-за заряда подключенных параллельно конденсаторов.

Шаг 3, если есть схема активного PFC

Транзисторы ключей схемы PFC (см. схему в первой части) подключены через дроссель параллельно выпрямителю напряжения сети. При пробое транзисторов вход оказывается закороченным и сгорает предохранитель. Как правило, вместе с ключами выходят из строя резисторы, подключенные к затворам и микросхема PWM-контроллера. Как проверить работу схемы PFC, рассмотрим ниже.

Шаг 4

Проверяем транзисторы ключей преобразователя. Транзисторы подключены таким образом, что пробой одного из них может не вызвать замыкания питания и сгорания предохранителя, при этом блок питания просто не запускается.

Причиной неисправности в этом узле часто служат электролитические конденсаторы, подключенные к базе. При их утечке или потере емкости, транзистор переходит из ключевого режима работы в усилительный, что вызывает перегрев элемента.

Эти элементы и конденсатор, обозначенный синим кругом на схеме выше, также являются причиной потери выходной мощности блока питания компьютера. При этом подключенный к системной плате блок не запускается, а без нагрузки работает. Из-за неисправности этих конденсаторов повышаются пульсации на выходе блока питания, что приводит к перезагрузкам и сбоям в работе системы. Эти элементы нужно обязательно выпаивать и проверять.

Если пробиваются транзисторы ключей, резисторы и диоды, подключенные к базе, часто также сгорают.

Шаг 5

Неисправность, рассмотренная в предыдущем шаге, зачастую вызвана завышенным напряжением питающей сети. Источник питания +5в дежурного режима работает постоянно и из-за скачков напряжения страдает первым. Наступила очередь его проверки.

При пробое силового транзистора нужно проверить, а лучше вообще заменить на заведомо исправные все полупроводниковые элементы схемы – транзисторы, диоды, оптопару. Затем проверяем все резисторы и конденсаторы, выпаивая их по очереди. Почему все?

Это очень капризная и важная часть блока питания, от нее запитана микросхема ШИМ-контроллера и схема включения материнской платы. При выходе источника из режима стабилизации, на эти узлы подается завышенное напряжение, что в лучшем случае приводит к сгоранию ШИМ-контроллера блока, а в худшем – потере материнской платы.

Второй случай, когда источник не запускается , +5 дежурного на выходе просто нет. Начальное напряжение для запуска схема получает через резисторы, подключенные к +310в. Зачастую они подгорают, изменяя значение своего сопротивления на гораздо большее, хотя внешне выглядят исправными. Учитывая высокие значения сопротивления резисторов при проверке детали нужно обязательно выпаивать.

Схема также может не запускаться из-за замыкания или перегрузки выходных цепей. Виновником этого может быть пробитый диод выпрямителя, сгоревший ШИМ-контроллер или устанавливаемый в качественных блоках питания защитный стабилитрон.


Всегда проверяйте конденсатор, обозначенный на схеме выше восклицательными знаками. От его исправности зависит значение выходного напряжения блока питания, а расположен он в зоне с повышенной рабочей температурой. Если в схеме блока не установлен защитный стабилитрон, именно из-за этого конденсатора выходит из строя материнская плата.

Шаг 6

Переходим к выпрямителям выходных напряжений. Выпрямители собраны на спаренных диодах, проверяем от центрального вывода оба крайних на наличие пробоя. Нужно обязательно проверить все элементы схемы стабилизатора 3.3в, потому что блоки с микросхемой ШИМ-контроллера TL494 не имеют обратной связи для контроля этого выхода. Блок питания будет запускаться вхолостую, но не работать под нагрузкой.

Также проверьте диоды выпрямителей для напряжений -5в, -12в. Учитывайте, что каждый выход блока нагружен низкоомным резистором, если появились сомнения в исправности одного из диодов, элемент лучше выпаять.

Шаг 7

Добрались до микросхемы ШИМ-контроллера. Возможности проверки исправности микросхемы без включения блока питания ограничены. Но, если в шаге 5, были обнаружены какие либо неисправности, а тем более, если при внешнем осмотре найден сгоревший резистор в цепи питания ШИМ-контроллера, микросхему нужно заменить заведомо исправной.

Выходы микросхемы подключены к двум транзисторам (C945 или 2N2222), если меняете микросхему, проверьте их также.

Шаг 8

После устранения всех неисправностей обнаруженных в предыдущих шагах, блок можно подключить к питающей сети, конечно при соблюдении всех мер предосторожности.

Если при подключении сгорел сетевой предохранитель – возвращаемся к шагу 1 и следующим, чтобы найти пропущенную неисправность.

Измеряем значение напряжения дежурного режима +5в на 9 (фиолетовый ) контакте разъема. Подключаем нагрузку, подойдет резистор сопротивлением 3-4Ом мощностью около 7Ватт. Снова измеряем напряжение.


Если блок питания выдает заниженное значение (4.3в - 4.8в) нужно заменить оптопару, TL431 и электролитические конденсаторы схемы стабилизатора. Напряжения нет вообще, повторяем шаг 5.

При нормальной работе источника дежурного питания, напряжение на входе PS ON (14,зеленый ) в пределах 2.3-5в, на остальных– 0в. Замыкаем 14 и 15 контакты перемычкой, блок должен запуститься.

Если старта не произошло, возвращаемся к шагу 4. Возможна ситуация, когда блок питания запустился на короткий промежуток времени, при этом дернулся вентилятор. Это происходит при неисправности выходных выпрямителей или микросхемы ШИМ-контроллера, снова проходим шаги 6 и 7.

Для блоков с системой активной PFC на этом этапе нужно проверить работоспособность схемы. Измеряем напряжение на конденсаторе сетевого выпрямителя, схема PFC поддерживает его значение в пределах 380-400в, если прибор показывает 310в – схема не работает и нужно повторить шаг 3.

У запущенного блока измеряем напряжение на выходе PG (8, серый ), правильное значение +5в. Затем проверяем все выходные напряжения - +12в, -12в, +5в, -5в, +3.3в. Нагружать при тестировании все выходы блока было бы правильно, но часто проблематично. Поэтому можно ограничиться нагрузкой каждого выхода по-отдельности. Для нагрузки можно использовать автомобильные лампы накаливания подходящей мощности.

Компьютер после ремонта блока питания обязательно нужно тестировать в течение 3-6 часов.

Читателю

Описать все возможные варианты неисправностей блока питания, даже в очень большой статье невозможно. Приведенная выше пошаговая инструкция дает положительный результат в 80% случаев, 20% оставляем на долю смекалки и упорства самого ремонтника. Эти качества и делают из обычного сервисного инженера Мастера с большой буквы.

Несколько схем блоков питания можно .

Если найдете в материале упущенные неисправности, пишите в комментариях – обсудим, дополним.

Что желательно иметь для проверки БП.
а. — любой тестер (мультиметр ).
б. — лампочки: 220 вольт 60 — 100 ватт и 6.3 вольта 0.3 ампера.
в. — паяльник, осциллограф, отсос для припоя.
г. — увеличительное стекло, зубочистки, ватные палочки, технический спирт.

Наиболее безопасно и удобно включать ремонтируемый блок в сеть через разделительный трансформатор 220v — 220v.
Такой трансформатор просто изготовить из 2-х ТАН55 или ТС-180 (от ламповых ч/б телевизоров). Просто соответствующим образом соединяются анодные вторичные обмотки, не надо ничего перематывать. Оставшиеся накальные обмотки можно использовать для построения регулируемого БП.
Мощность такого источника вполне достаточна для отладки и первоначального тестирования и дает массу удобств:
— электробезопасность
— возможность соединять земли горячей и холодной части блока единым проводом, что удобно для снятия осциллограмм.
— ставим галетный переключатель — получаем возможность ступенчатого изменения напряжения.

Также для удобства можно зашунтировать цепи +310В резистором 75K-100K мощностью 2 — 4Вт — при выключении быстрее разряжаются входные конденсаторы.

Если плата вынута из блока, проверьте, нет ли под ней металлических предметов любого рода. Ни в коем случае НЕ ЛЕЗЬТЕ РУКАМИ в плату и НЕ ДОТРАГИВАЙТЕСЬ до радиаторов во время работы блока, а после выключения подождите около минуты, пока конденсаторы разрядятся. На радиаторе силовых транзисторов может быть 300 и более вольт, он не всегда изолирован от схемы блока!

Принципы измерения напряжений внутри блока.
Обратите внимание, что на корпус БП земля с платы подаётся через проводники около отверстий для крепежных винтов.
Для измерения напряжений в высоковольтной ( «горячей ») части блока (на силовых транзисторах, в дежурке) требуется общий провод — это минус диодного моста и входных конденсаторов. Относительно этого провода всё и измеряется только в горячей части, где максимальное напряжение — 300 вольт. Измерения желательно проводить одной рукой.
В низковольтной ( «холодной ») части БП всё проще, максимальное напряжение не превышает 25 вольт. В контрольные точки для удобства можно впаять провода, особенно удобно припаять провод на землю.

Проверка резисторов.
Если номинал (цветные полоски) еще читается — заменяем на новые с отклонением не хуже оригинала (для большинства — 5%, для низкоомных в цепях датчика тока может быть и 0.25%). Если же покрытие с маркировкой потемнело или осыпалось от перегрева — измеряем сопротивление мультиметром. Если сопротивление равно нулю или бесконечности — вероятнее всего резистор неисправен и для определения его номинала потребуется принципиальная схема блока питания либо изучение типовых схем включения.

Проверка диодов.
Если мультиметр имеет режим измерения падения напряжения на диоде — можно проверять, не выпаивая. Падение должно быть от 0,02 до 0,7 В. Если падение — ноль или около того (до 0,005) - выпаиваем сборку и проверяем. Если те же показания - диод пробит. Если же прибор не имеет такой функции, установите прибор на измерение сопротивления (обычно предел в 20кОм). Тогда в прямом направлении исправный диод Шотки будет иметь сопротивление порядка одного — двух килоом, а обычный кремниевый — порядка трех — шести. В обратном направлении сопротивление равно бесконечности.

Проверка полевого транзистора

Для проверки БП можно и нужно собрать нагрузку.
Пример удачного исполнения смотреть здесь.
Берём выпаянный из ненужной платы ATX разъём и припаиваем к нему провода сечением не менее 18 AWG, стараясь задействовать все контакты по линиям +5 вольт, +12 и +3.3 вольта.
Нагрузку надо рассчитывать ватт на 100 по всем каналам (можно с возможностью увеличения для проверок более мощных блоков). Для этого берём мощные резисторы или нихром. Также с осторожностью можно использовать мощные лампы (например , галогенные на 12В), при этом следует учесть, что сопротивление нити накаливания в холодном состоянии сильно меньше, чем в нагретом. Поэтому при запуске с вроде бы нормальной нагрузкой из ламп блок может уходит в защиту.
Параллельно нагрузкам можно подключить лампочки или светодиоды, чтобы видеть наличие напряжения на выходах. Между выводом PS_ON и GND подключаем тумблер для включения блока. Для удобства при эксплуатации можно всю конструкцию разместить в корпусе от БП с вентилятором для охлаждения.

Проверка блока:

Можно предварительно включить БП в сеть, чтобы определиться с диагнозом: нет дежурки (проблема с дежуркой, либо КЗ в силовой части), есть дежурка, но нет запуска (проблема с раскачкой или ШИМ), БП уходит в защиту (чаще всего — проблема в выходных цепях либо конденсаторах), завышенное напряжение дежурки (90 % — вспухшие конденсаторы, и часто как результат — умерший ШИМ).

Начальная проверка блока
Снимаем крышку и начинаем проверку, особое внимание обращая на поврежденные, изменившие цвет, потемневшие или сгоревшие детали.
Предохранитель. Как правило, перегорание хорошо заметно визуально, но иногда он обтянут термоусадочным кембриком - тогда проверяем сопротивление омметром. Перегорание предохранителя может свидетельствовать, например, о неисправности диодов входного выпрямителя, ключевых транзисторов или схемы дежурного режима.
Дисковый термистор. Выходит из строя крайне редко. Проверяем сопротивление — должно быть не более 10 Ом. В случае неисправности заменять его перемычкой нежелательно — при включении блока резко возрастет импульсный ток заряда входных конденсаторов, что может привести к пробою диодов входного выпрямителя.
Диоды или диодная сборка входного выпрямителя. Проверяем мультиметром (в режиме измерения падения напряжения) на обрыв и короткое замыкание каждый диод, можно не выпаивать их из платы. При обнаружении замыкания хотя бы у одного диода рекомендуется также проверить входные электролитические конденсаторы, на которые подавалось переменное напряжение, а также силовые транзисторы, т.к. очень велика вероятность их пробоя. В зависимости от мощности БП диоды должны быть рассчитаны на ток не менее 4…8 ампер. Двухамперные диоды, часто встречающиеся в дешевых блоках, сразу меняем на более мощные.
Входные электролитические конденсаторы. Проверяем внешним осмотром на вздутие (заметное изменение верхней плоскости конденсатора от ровной поверхности к выпуклой), также проверяем емкость — она не должна быть ниже обозначенной на маркировке и отличаться у двух конденсаторов более чем на 5%. Также проверяем варисторы, стоящие параллельно конденсаторам, (обычно явно сгорают «в уголь») и выравнивающие резисторы (сопротивление одного не должно отличаться от сопротивления другого более чем на 5%).
Ключевые (они же — силовые) транзисторы. Для биполярных — проверяем мультиметром падение напряжения на переходах «база -коллектор» и «база -эмиттер» в обоих направлениях. В исправном биполярном транзисторе переходы должны вести себя как диоды. При обнаружении неисправности транзистора также необходимо проверить всю его «обвязку »: диоды, низкоомные резисторы и электролитические конденсаторы в цепи базы (конденсаторы лучше сразу заменить на новые большей емкости, например, вместо 2.2мкФ * 50В ставим 10.0мкФ * 50В). Также желательно зашунтировать эти конденсаторы керамическими емкостью 1.0…2.2 мкФ.
Выходные диодные сборки. Проверяем их мультиметром, наиболее частая неисправность — короткое замыкание. Замену лучше ставить в корпусе ТО-247. В ТО-220 чаще помирают… Обычно для 300-350 Вт блоков диодных сборок типа MBR3045 или аналогичных на 30А — с головой.
Выходные электролитические конденсаторы. Неисправность проявляется в виде вздутия, следов коричневого пуха или потеков на плате (при выделении электролита). Меняем на конденсаторы нормальной емкости, от 1500 мкФ до 2200…3300 мкФ, рабочая температура — 105° С. Желательно использовать серии LowESR.
Также измеряем выходное сопротивление между общим проводом и выходами блока. По +5В и +12В вольтам — обычно в районе 100-250 ом (то же для -5В и -12В), +3.3В — около 5…15 Ом.

Потемнение или выгорание печатной платы под резисторами и диодами свидетельствует о том, что компоненты схемы работали в нештатном режиме и требуется анализ схемы для выяснения причины. Обнаружение такого места возле ШИМа означает, что греется резистор питания ШИМ 22 Ома от превышения дежурного напряжения и, как правило, первым сгорает именно он. Зачастую ШИМ в этом случае тоже мертв, так что проверяем микросхему (см . ниже). Такая неисправность — следствие работы «дежурки » в нештатном режиме, обязательно следует проверить схему дежурного режима.

Проверка высоковольтной части блока на короткое замыкание.

Берём лампочку от 40 до 100 Ватт и впаиваем вместо предохранителя или в разрыв сетевого провода.
Если при включении блока в сеть лампа вспыхивает и гаснет — все в порядке, короткого замыкания в «горячей » части нет — лампу убираем и работаем дальше без нее (ставим на место предохранитель или сращиваем сетевой провод).
Если при включении блока в сеть лампа зажигается и не гаснет — в блоке короткое замыкание в «горячей » части. Для его обнаружения и устранения делаем следующее:
Выпаиваем радиатор с силовыми транзисторами и включаем БП через лампу без замыкания PS-ON.
Если короткое (лампа горит, а не загорелась и погасла) — ищем причину в диодном мосте, варисторах, конденсаторах, переключателе 110/220V (если есть, его вообще лучше выпаять).
Если короткого нет — запаиваем транзистор дежурки и повторяем процедуру включения.
Если короткое есть — ищем неисправность в дежурке.
Внимание! Возможно включение блока (через PS_ON) с небольшой нагрузкой при не отключенной лампочке, но во-первых, при этом не исключена нестабильная работа БП, во-вторых, лампа будет светиться при включении БП со схемой APFC.

Проверка схемы дежурного режима (дежурки ).

Краткое руководство: проверяем ключевой транзистор и всю его обвязку (резисторы , стабилитроны, диоды вокруг). Проверяем стабилитрон, стоящий в базовой цепи (цепи затвора) транзистора (в схемах на биполярных транзисторах номинал от 6В до 6.8В, на полевых, как правило, 18В). Если всё в норме, обращаем внимание на низкоомный резистор (порядка 4,7 Ом) — питание обмотки трансформатора дежурного режима от +310В (используется как предохранитель, но бывает и трансформатор дежурки сгорает) и 150k~450k (оттуда же в базу ключевого транзистора дежурного режима) — смещение на запуск. Высокоомные часто уходят в обрыв, низкоомные — так же «успешно » сгорают от токовой перегрузки. Меряем сопротивление первичной обмотки дежурного транса — должно быть порядка 3 или 7 Ом. Если обмотка трансформатора в обрыве (бесконечность ) — меняем или перематываем транс. Бывают случаи, когда при нормальном сопротивлении первичной обмотки трансформатор оказывается нерабочим (имеются короткозамкнутые витки). Такой вывод можно сделать, если вы уверены в исправности всех остальных элементов дежурки.
Проверяем выходные диоды и конденсаторы. При наличии обязательно меняем электролит в горячей части дежурки на новый, припаиваем параллельно нему керамический или пленочный конденсатор 0.15…1.0 мкФ (важная доработка для предотвращения его «высыхания »). Отпаиваем резистор, ведущий на питание ШИМ. Далее на выход +5VSB (фиолетовый ) вешаем нагрузку в виде лампочки 0.3Ах6.3 вольта, включаем блок в сеть и проверяем выходные напряжения дежурки. На одном из выходов должно быть +12…30 вольт, на втором — +5 вольт. Если все в порядке — запаиваем резистор на место.

Проверка микросхемы ШИМ TL494 и аналогичных (КА7500 ).
Про остальные ШИМ будет написано дополнительно.
Включаем блок в сеть. На 12 ноге должно быть порядка 12-30V.
Если нет — проверяйте дежурку. Если есть — проверяем напряжение на 14 ноге — должно быть +5В (±5%).
Если нет — меняем микросхему. Если есть — проверяем поведение 4 ноги при замыкании PS-ON на землю. До замыкания должно быть порядка 3…5В, после — около 0.
Устанавливаем перемычку с 16 ноги (токовая защита) на землю (если не используется — уже сидит на земле). Таким образом временно отключаем защиту МС по току.
Замыкаем PS-ON на землю и наблюдаем импульсы на 8 и 11 ногах ШИМ и далее на базах ключевых транзисторов.
Если нет импульсов на 8 или 11 ногах или ШИМ греется - меняем микросхему. Желательно использовать микросхемы от известных производителей (Texas Instruments, Fairchild Semiconductor и т.д.).
Если картинка красивая - ШИМ и каскад раскачки можно считать живым.
Если нет импульсов на ключевых транзисторах — проверяем промежуточный каскад (раскачку ) - обычно 2 штуки C945 с коллекторами на трансе раскачки, два 1N4148 и емкости 1…10мкф на 50В, диоды в их обвязке, сами ключевые транзисторы, пайку ног силового трансформатора и разделительного конденсатора.

Проверка БП под нагрузкой:

Измеряем напряжение дежурного источника, нагруженного вначале на лампочку, а потом — током до двух ампер. Если напряжение дежурки не просаживается — включаем БП, замыкая PS-ON (зеленый ) на землю, измеряем напряжения на всех выходах БП и на силовых конденсаторах при 30-50% нагрузке кратковременно. Если все напряжения в допуске, собираем блок в корпус и проверяем БП при полной нагрузке. Смотрим пульсации. На выходе PG (серый ) при нормальной работе блока должно быть от +3,5 до +5В.

После ремонта, особенно при жалобах на нестабильную работу, минут 10-15 измеряем напряжения на входных электролитических конденсаторах (лучше с 40%-ой нагрузкой блока) — часто один «высыхает » или «уплывают » сопротивления выравнивающих резисторов (стоят параллельно конденсаторам) — вот и глючим… Разброс в сопротивлении выравнивающих резисторов должен быть не более 5%. Емкость конденсаторов должна составлять минимум 90% от номинала. Так же желательно проверить выходные емкости по каналам +3.3В, +5В, +12В на предмет «высыхания » (см . выше), а при возможности и желании усовершенствовать блок питания, заменяйте их на 2200мкф или лучше на 3300мкф и проверенных производителей. Силовые транзисторы, «склонные » к самоуничтожению (типа D209) меняем на MJE13009 или другие нормальные, см. тему Мощные транзисторы, применяемые в БП. Подбор и замена.. Выходные диодные сборки по каналам +3.3В, +5В смело меняйте на более мощные (типа STPS4045) с не меньшим допустимым напряжением. Если в канале +12В вы заметили вместо диодной сборки два спаянных диода — необходимо поменять их на диодную сборку типа MBR20100 (20А 100В). Если не найдете на сто вольт — не страшно, но ставить необходимо минимум на 80В (MBR2080 ). Заменить электролиты 1.0 мкфх50В в цепях базы мощных транзисторов на 4.7-10.0 мкфх50В. Можете отрегулировать выходные напряжения на нагрузке. При отсутствии подстроечного резистора — резисторными делителями, которые установлены от 1й ноги ШИМа к выходам +5В и +12В (после замены трансформатора или диодных сборок ОБЯЗАТЕЛЬНО проверить и выставить выходные напряжения).

Рецепты ремонта от ezhik97:

Опишу полную процедуру, как я ремонтирую и проверяю блоки.
Собственно ремонт блока — замена всего что погорело и что выявилось обычной прозвонкой
Модифицируем дежурку для работы от низкого напряжения. Занимает 2-5 минут.
Подпаиваем на вход переменку 30В от разделительного трансформатора. Это дает нам такие плюсы, как: исключается вероятность что-нибудь спалить дорогое из деталей, и можно безбоязненно тыкать осциллографом в первичке.
Включаем систему и проверяем соответствие напряжение дежурки и отсутствие пульсаций. Зачем проверять отсутствие пульсаций? Чтобы удостоверится, что блок будет работать в компе и не будет «глюков ». Занимает 1-2 минуты. Сразу же ОБЯЗАТЕЛЬНО проверяем равенство напряжений на сетевых фильтрующих конденсаторах. Тоже момент, не все знают. Разница должны быть небольшая. Скажем, процентов до 5 примерно.
Если больше — есть очень большая вероятность что блок под нагрузкой не запустится, либо будет выключаться во время работы, либо стартовать с десятого раза и т.п.. Обычно разница или маленькая, или очень большая. Займет 10 секунд.
Замыкаем PS_ON на землю (GND ).
Смотрим осциллографом импульсы на вторичке силового транса. Они должны быть нормальные. Как они должны выглядеть? Это надо видеть, потому как без нагрузки они не прямоугольные. Здесь сразу же будет видно, если что-то не так. Если импульсы не нормальные — есть неисправность во вторичных цепях или в первичных. Если импульсы хорошие — проверяем (для проформы) импульсы на выходах диодных сборок. Все это занимает 1-2 минуты.
Все! Блок 99% запустится и будет отлично работать!
Если в пункте 5 импульсов нет, возникает необходимость поиска неисправности. Но где она? Начинаем «сверху »
Все выключаем. Отсосом отпаиваем три ноги переходного транса с холодной стороны. Далее пальцем берем транс и просто перекашиваем его, подняв холодную сторону над платой, т.е. вытянув ноги из платы. Горячуюю сторону вообще не трогаем! ВСЕ! 2-3 минуты.
Все включаем. Берем проводок. Соединяем накоротко площадку, где была средняя точка холодной обмотки разделительного транса с одним из крайних выводов этой самой обмотки и на этом же проводе смотрим импульсы, как я писал выше. И на втором плече так же. 1 минута
По результатам делаем вывод, где неисправность. Часто бывает что картинка идеальная, но амплитуда вольт 5-6 всего (должно быть под 15-20). Тогда уже либо транзистор в этом плече дохлый, либо диод с его коллектора на эммитер. Когда удостоверишься, что импульсы в таком режиме красивые, ровные, и с большой амплитудой, запаивай переходной транс обратно и посмотри осцилом на крайние ноги еще раз. Сигналы будут уже не квадратными, но они должны быть идентичными. Если они не идентичны, а слегка отличаются — это косяк 100%.

Может оно и будет работать, только вот надежности это не добавит, а уж про всякие непонятные глюки, могущие вылезти, я промолчу.
Я все время добиваюсь идентичности импульсов. И никакого разброса параметров там ни в чем быть не может (там же одинаковые плечи раскачки), кроме как в полудохлых C945 или их защитных диодах. Вот сейчас делал блок — всю первичку восстановил, а вот импульсы на эквиваленте переходного трансформатора слегка отличались амплитудой. На одном плече 10,5В, на другом 9В. Блок работал. После замены С945 в плече с амплитудой 9В все стало нормально — оба плеча 10,5В. И такое часто бывает, в основном после пробоя силовых ключей с КЗ на базу.
Похоже утечка сильная К-Э у 945 в связи с частичным пробоем (или что там у них получается) кристалла. Что в совокупности с резистором, включенным последовательно с трансом раскачки, и приводит к снижению амплитуды импульсов.
Если импульсы правильные — ищем косяк с горячей стороны инвертора. Если нет — с холодной, в цепях раскачки. Если импульсов вообще нет — копаем ШИМ.
Вот и все. По моей практике это самый быстрый из надежных способов проверки.
Некоторые после ремонта сразу подают 220В. Я отказался от такого мазохизма. Хорошо если просто не заработает, а может ведь и бомбануть, попутно вынеся все что ты перепаять успел.

Прежде чем ремонтировать блок питания, убедитесь, в нем ли причина плохой работы компьютера. Невозможность запустить компьютер может быть обусловлена другими факторами.

Как проверить работоспособность блока питания компьютера АТХ

Проверить работоспособность блока питания возможно без измерительных приборов. При этом, его можно не извлекать из системного блока. Чтоб это сделать, отсоединяем от материнской платы и других устройств все разъемы, идущие от него. Оставляем 1 из 4 контактных разъемов для обеспечения нагрузки. Питание на материнскую плату от блока питания поступает при помощи 20 либо 24 контактного разъема, а так же 4 либо 6 контактного. Чтоб надежно фиксировать контакты, на разъемах предусмотрены защелки. Чтоб вынуть разъем, необходимо взяться пальцами сверху защелки и надавить, плавно покачивая ее из стороны в сторону, тем самым вынув ответную часть.

Два вывода разъема, снятого с материнки, следует закоротить между собой при помощи провода или скрепки. Провода располагаются со стороны защелки. Место установки перемычки показано на фото желтым. Если в разъеме 20 контактов, закоротить необходимо 14 (зеленый, может серый, POWER ON) и 15 (черный, GND) выводы. Если разъем 24 контактный, закорачиваем 16 (зеленый, может серый, POWER ON) и 17 (черный, GND) выводы.


Если замечено вращение крыльчатки кулера, блок питания можно считать исправным. Причиной плохой работы компьютера может быть выход из строя других блоков. Однако, эта проверка не дает полной гарантии на 100% работоспособность компьютера, поскольку отклонение напряжений может быть больше нормы. Для того, чтоб исключить поломку блока питания, подключите его к блоку нагрузок, измеряйте уровень напряжений на выходе. Отклонение напряжение не должно быть больше указанных в таблице.

Выходное напряжение, В +3,3 +5,0 +12,0 -12,0 +5,0 SB GND
Цвет провода оранжевый красный желтый голубой синий черный
Допустимое отклонение, % ±5 ±5 ±5 ±10 ±5 0
Допустимое минимальное напряжение +3,14 +4,75 +11,40 -10,80 +4,75 0
Допустимое максимальное напряжение +3,46 +5,25 +12,60 -13,20 +5,25 0

Отрицательный конец щупа прибора подключается к общему проводу (черный), положительный – к контактам разъема. Проделывать эту операцию можно при включенном компьютере.

Блок питания — сложное электронное устройство. Чтобы его отремонтировать, необходимо владеть навыками радиотехники, иметь необходимые приборы. В большинстве случаев 80% поломок блоков питания можно устранить в домашних условиях. Для этого нужно уметь паять, работать с отверткой и знать схемы источников питания. Буквально все блоки питания создаются по схеме приведенной ниже. Я отметил те компоненты, которые зачастую выходят из строя. Их можно будет заменить самостоятельно. Во время ремонта блока питания придется воспользоваться цветовой маркировкой проводов, выходящих из него.


Через сетевой шнур подаётся напряжение на разъемные соединения, а уже оттуда на плату блока питания. Главным элементом защиты является предохранитель Пр1, обычно он рассчитан на ток 5 А. В зависимости от того, какой мощности источник питания, предохранитель может быть другого номинала. Фильтр образован конденсаторами С1-С4 и дросселем L1. Он служит для подавления дифференциальных и синфазных помех, возникающих при работе блока питания и поступающих из сети. По такой схеме собранные все сетевые фильтры. Они установлены в изделиях, блоки питания которых не имеют силового трансформатора. А именно: принтерах, видеомагнитофонах, сканерах, телевизорах. Фильтр работает на полную мощность, если подключение к сети осуществляется при помощи заземляющего провода. Жаль, но большинство китайских источников питания не имеют фильтра.

Примером тому служат запаянные перемычки дросселя и отсутствие конденсаторов. Если при ремонте вы обнаружите отсутствие некоторых элементов фильтра, рекомендую их установить. Ниже на фото показать блок питания, фильтр которого установлен.

Чтобы защититься от перенапряжения, устанавливаются варисторы Z1-Z3. Обозначены на фото синим цветом. Они работают по простому принципу. Если напряжение сети нормальное, варисторы имеют большое напряжение, которое никак не влияет на работоспособность схемы. Если уровень напряжение сети превышает допустимый, сопротивление падает, приводя к сгоранию предохранителя. Это спасает основные детали компьютера от поломки. Если блок питания перестал работать от перенапряжения, замените предохранитель.

Некоторые модели блоков питания имеют возможность переключения, что позволяет работать от сети 115 В. В таком случае контакты SW1 (переключатель) должны находиться в замкнутом состоянии. Чтоб конденсаторы С5-С6, включены в сеть после моста VD1-VD4 заряжались плавно, устанавливается термистор RT, имеющий отрицательный ТКС. Когда термистор холодный, его сопротивление равно единицам Ом, в случае прохождения тока через него, он разогревается и сопротивление падает в 20-50 раз. Компьютер имеет функцию дистанционного включения. Для этого в блоке питания установлен дополнительный источник питания с малой мощностью, который постоянно включен. Даже когда компьютер выключен, но вилка не вынута из сети. Он имеет напряжение +5 B_SB и создан по схеме автоколебательного трансформаторного блокинг-генератора всего на 1 тиристоре, который запитан от напряжения диодом VD1-VD4. Это самый ненадежный узел блока питания и производить ремонтные работы сложно.

Напряжения, необходимые для работы устройств системного блока и материнские платы, фильтруются от помех при помощи конденсаторов и дросселя, а затем проводами подаются к самим источникам. Кулер, служащий для охлаждения блока питания, питается от напряжения -12 В.

Как добраться до платы блока питания

Для того, чтоб извлечь блок питания из системного блока, откручиваем 4 винта (отмечены на фото). Перед осмотром отсоединяем проводники, имеющие сильное натяжение. Остальные можно оставить.


Располагаем блок питания, таким образом, чтоб он был на углу системного блока. Выкручиваем 4 винта, помеченных на фото розовым цветом. Чаще всего пара винтов находится под наклейкой. Снимаем ее или продырявливаем. По бокам могут быть наклеены бумажки, мешающие снятию крышки, их тоже следует удалить или разрезать.

Крышка снята, удаляем пыль пылесосом. Это первая причина выхода радиодеталей из строя. Она, покрывая толстым слоем детали, снижает теплоотдачу, что приводит к перегреву и сгоранию.

Поиск неисправности блока питания компьютера АТХ

Первым делом осматриваем все детали, уделяя особое внимание геометрии конденсаторов. Чаще всего, из-за повышенного режимы температуры, они выходят из строя. 50% блоков питания прекращают работу из-за неисправных конденсаторов. Это обусловлено плохой работой кулера. Смазка кулера высыхает и срабатывает, обороты уменьшаются. Охлаждение деталей уменьшается, вследствие чего происходит перегрев. Когда кулер начинает издавать шум, следует его почистить и смазать. Если видно вздутие конденсатора и подтек электролита, нужно его менять. Вздутие может произойти по причине пробоя в изоляции. Бывает такое, что внешне конденсатор цел, однако уровень пульсаций напряжения больше. В этом случае отсутствует контакт между выводом конденсатора и обкладкой. Как говорится, конденсатор находится в обрыве. Проверить обрыв можно при помощи тестера, установив режим измерений на сопротивление. В статье «Измерение сопротивления» описывается технология проверки конденсаторов.

Следующим шагом будет осмотр предохранителей, резисторов, полупроводниковых приборов. Внутри предохранителя по центру имеется тонкая блестящая цельная проволока, иногда она имеет утолщение в средине. Если ее не видно, скорее всего, произошло ее сгорание. Чтоб убедиться так ли это, прозваниваем предохранитель омметром. Если предохранитель сгорел, ремонтируем его или заменяем новым. Перед тем, как его заменить, для проверки блока питания не выпаиваем сгоревший предохранитель из платы, а припаиваем к его выводам жилу медного проводника, диаметр которого 0,18 мм. Если во время включения блока питания проводок не сгорит, имеет смысл заменить предохранитель новым.

Как заменить предохранитель в блоке питания компьютера АТХ

Чаще всего блок питания имеет трубчатый стеклянный предохранитель, который рассчитан на защитный ток 5 А. Чтоб обеспечить надежность, он впаивается в плату. Для этого существуют предохранители, на которых есть выводы под пайку.


Его можно заменить обычным предохранителем, ток защиты которого равен 5 А. К его торцам следует припаять кусочки одножильного провода, диаметр которых 0,5 мм и длина 5 мм.

Остается впаять предохранитель в плату и проверить его в работе.


Если во время включения блока питания произошло повторное сгорание предохранителя, это следствие пробоя переходов в тиристорах, либо выход из строя других элементов. Чтоб отремонтировать такой блок питания, необходимо обладать высокой квалификацией. Можно заменить предохранитель иным, рассчитанным на ток свыше 5 А. Но он все равно сгорит.

Поиск в блоке питания неисправных электролитических конденсаторов

Частой причиной нестабильной работы компьютера и выхода из строя блока питания является вздутие корпуса электролитического конденсатора. Чтоб предотвратить взрыв, на торце конденсатора делают надсечки. Когда давление в конденсаторе возрастает, корпус вздувается или разрывается именно в этом месте. Найти такой конденсатор не составит труда. Основная причина выхода из строя конденсатора заключается в плохой работе кулера или увеличения напряжения.


Глянув на фото, можно заметить, что конденсатор справа вздут и имеет следы подтека электролита, у левого конденсатора торец плоский. Его можно заменить. Чаще всего выходу из строя поддаются конденсаторы с питанием по шине +5 В, потому что запас напряжения мал и равен 6,3 В. Были случаи, когда конденсаторы цепи +5 В были вздуты. Когда я провожу их замену, устанавливаю конденсаторы не менее 10 В.

Чем больше напряжение конденсатора, тем лучше. Важно, чтоб он подошел по размерам. Если конденсатор не вмещается, я беру конденсатор с меньшей емкостью, но большим напряжением. Такая замена не приведет к ухудшению работы компьютера. Произвести замену конденсатора не составит труда, главное уметь обращаться с паяльником. Важно не забывать, что конденсатор со стороны отрицательного вывода имеет маркировку. Она нанесена в виде светлой широкой полосы, новый конденсатор следует устанавливать на то же место, где расположена эта полоса.

Проверка других элементов в блоке питания компьютера АТХ

Простые конденсаторы, а также резисторы не должны быть потемневшими и иметь нагар. Корпус полупроводников не должен иметь сколы и трещины. Если вы решили самостоятельно произвести ремонт, лучше всего заменить элементы, показанные на схеме. Если краска на резисторе потемнела, развалился тиристор, производить замену не имеет смысла.


По той причине, что, скорее всего из строя вышли другие элементы, исправность которых можно обнаружить только при помощи приборов. Если резистор потемнел, это не говорит о том, что он неисправен. Может быть, только краска стала темной, на само сопротивление в норме.

Если вспучились все конденсаторы, смысла проводить их замену я не вижу. Это свидетельствует о том, что схема стабилизации выходного напряжения вышла из строя, конденсаторы получили напряжение, превышающие норму. Этот блок питания можно отремонтировать, если есть навыки работы с измерительными приборами и электрическими элементами. Однако такой ремонт хорошо ударит по карману.

Низкая надежность р оссийских электросетей является причиной выхода из строя бытовой аппаратуры. В системных блоках стационарных компьютеров, после завершения работы операционной системы, несмотря на кажущееся бездействие, блок питания остается постоянно подключенным к сети. В таком состоянии он подвергается опасности воздействия скачков напряжения.

Использование сетевых фильтров ситуацию исправляют лишь тем, что на них имеется кнопка отключения, что является более действенной защитой, нежели указанные защитно-фильтрационные функции.

Большинство системных блоков питания собраны из обычных, так называемых нонеймовских (no name - без именных) производителей. В таком случае ремонт блока питания не оправдывает средств.

Но если у вас установлен качественный блок питания именитых производителей и мощностью, превышающей 400 ватт, то разумнее покупки нового может быть попытка самостоятельного ремонта вышедшего из строя блока питания.

В первую очередь необходимо помнить, что в блоке питания используется опасное для жизни напряжение 220 вольт . Схема блока питания содержит такие элементы, как конденсаторы большой емкости, которые способны хранить напряжение на протяжении долгого времени. Если вы никогда не держали в руках , то вам разумнее будет попросить кого-нибудь из товарищей, или подумать над покупкой нового.

И так, приступаем к ремонту компьютерного блока питания . Так таковой принципиальной схемы в Интернете вы вряд ли найдете. Имеется несколько типичных схем блоков питания, так что придется ориентироваться по ходу действия.

Снимаем крышку блока питания. На плате будут расположены большие радиаторы, необходимые для отвода тепла от силовых элементов. Большинство неисправностей заключается в выходе из строя именно этих силовых элементов, находящихся в первичной цепи .

Для надежности следует выпаять эти элементы (часто приходится выпаивать посредством оплетки - берется оплетка, например экранирующая оплетка от высокочастотного кабеля, прислоняется к ножке, которую необходимо отпаять, прислоняется мощный паяльник, предварительно окунутый на секунду в канифоль. Припой из платы будет облуживать мелкие волоски оплетки и постепенно полностью уйдет с платы.

Для уверенности в целостности элементов рекомендуется найти их данные (datasheet) в Интернете. Для этого в любом поисковике набираем слово datasheet и название транзистора. В приведенных данных будет указан тип транзистора, его состав (простой или составной) и местоположение "базы", "коллектора" и "эмиттера".

Повторяем, что в рабочем транзисторе должны звониться в одном направлении база с коллектором и база с эмиттером, причем они не должны звониться в обратной полярности (поменять щупы местами) и не должно быть прозвона между коллектором и эмиттером в обоих направлениях.

Дополнительно стоит проверить близлежащие диоды , обозначенные в виде треугольников, с поперечной чертой у вершины. Они прозваниваются только в одном направлении.

После замены дефектованных элементов, тщательно проверяем места пайки на наличие "соплей" (перемычек с соседними элементами, созданных при пайке). Пробный запуск блока питания можно произвести путем подключения нагрузки на 12 вольт (например, автомобильной лампочки, или старого жесткого диска и т.д.). Затем перемыкаем вывод "Power-on" (обычно зеленого цвета, четвертый от края самого большого разъема) с массой (рядом находящийся пятый вывод черного цвета).

В случае замены всех неисправных элементов вентилятор блока питания должен начать крутиться. Для уверенности стоит напряжения на основных разъемах. Целая величина основных напряжений 5 и 12 вольт могут с уверенностью сказать, что блок питания отремонтирован.

В случае неуспешного запуска и большого желания отремонтировать можно попытаться задать вопрос на специализированных редиотехнических форумах. Обычно завсегдатаи таких форумов помогают дельным советом на что обратить внимание.

Желаем вам стабильного напряжения и долгих лет жизни вашему блоку питания.