Регрессионный анализ. Уравнение регрессии

Коэффициенты регрессии показывают интенсивность влияния факторов на результативный показатель. Если проведена предвари­тельная стандартизация факторных показателей, то b 0 равняется сред­нему значению результативного показателя в совокупности. Коэффици­енты b 1 , b 2 , ..., b n показывают, на сколько единиц уровень результативно­го показателя отклоняется от своего среднего значения, если значения факторного показателя отклоняются от среднего, равного нулю, на одно стандартное отклонение. Таким образом, коэффициенты регрессии ха­рактеризуют степень значимости отдельных факторов для повышения уровня результативного показателя. Конкретные значения коэффициен­тов регрессии определяют по эмпирическим данным согласно методу наименьших квадратов (в результате решения систем нормальных урав­нений).

Линия регрессии - линия, которая точнее всего отражает распределение экспериментальных точек на диаграмме рассеяния и крутизна наклона которой характеризует зависимость между двумя интервальными переменными.

Линия регрессии чаще всего ищется в виде линейной функции (линейная регрессия), наилучшим образом приближающей искомую кривую. Делается это с помощью метода наименьших квадратов, когда минимизируется сумма квадратов отклонений реально наблюдаемых от их оценок (имеются в виду оценки с помощью прямой линии, претендующей на то, чтобы представлять искомую регрессионную зависимость):

(M - объём выборки). Этот подход основан на том известном факте, что фигурирующая в приведённом выражении сумма принимает минимальное значение именно для того случая, когда .
57. Основные задачи теории корреляции.

Теория корреляции представляет собой аппарат, оценивающий тесноту связей между явлениями, которые находятся не только в причинно-следственных отношениях. С помощью теории корреляции оцениваются стохастические, но не причинные связи. Автором совместно с Лукацкой М. Л. предпринята попытка получить оценки для причинных связей. Однако вопрос о причинно-следственных отношениях явлений, о том, как опознать причину и следствие, остается открытым, и кажется, что на формальном уровне он принципиально не разрешим.

Теория корреляции и ее применен к анализу производства.

Теория корреляции, являющаяся одним из разделов математической статистики, позволяет сделать обоснованные предположения о возможных пределах, в которых с известной степенью надежности будет находиться исследуемый параметр, если другие статистически связанные с ним параметры получат определенные значения.

В теории корреляции принято выделять две основные задачи .

Первая задача теории корреляции - установить форму корреляционной связи, т.е. вид функции регрессии (линейная, квадратичная и т.д.).

Вторая задача теории корреляции - оценить тесноту (силу) корреляционной связи.

Теснота корреляционной связи (зависимости) У на X оценивается по величине рассеивания значений У вокруг условного среднего. Большое рассеивание свидетельствует о слабой зависимости У от X, малое рассеивание указывает на наличие сильной зависимости.
58. Корреляционная таблица и ее числовые характеристики.

На практике в результате независимых наблюдений над величинами X и Y, как правило, имеют дело не со всей совокупностью всех возможных пар значений этих величин, а лишь с ограниченной выборкой из генеральной совокупности, причем объем n выборочной совокупности определяется как количество имеющихся в выборке пар.

Пусть величина Х в выборке принимает значения x 1 , x 2 ,....x m , где количество различающихся между собой значений этой величины, причем в общем случае каждое из них в выборке может повторяться. Пусть величина Y в выборке принимает значения y 1 , y 2 ,....y k , где k - количество различающихся между собой значений этой величины, причем в общем случае каждое из них в выборке также может повторяться. В этом случае данные заносят в таблицу с учетом частот встречаемости. Такую таблицу с группированными данными называют корреляционной.

Первым этапом статистической обработки результатов является составление корреляционной таблицы.

Y\X x 1 x 2 ... x m n y
y 1 n 12 n 21 n m1 n y1
y 2 n 22 n m2 n y2
...
y k n 1k n 2k n mk n yk
n x n x1 n x2 n xm n

В первой строке основной части таблицы в порядке возрастания перечисляются все встречающиеся в выборке значения величины X. В первом столбце также в порядке возрастания перечисляются все встречающиеся в выборке значения величины Y. На пересечении соответствующих строк и столбцов указываются частоты n ij (i=1,2,...,m; j=1,2,...,k) равные количеству появлений пары (x i ;y i) в выборке. Например, частота n 12 представляет собой количество появлений в выборке пары (x 1 ;y 1).

Так же n xi n ij , 1≤i≤m, сумма элементов i-го столбца, n yj n ij , 1≤j≤k, - сумма элементов j-ой строки и n xi = n yj =n

Аналоги формул, полученные по данным корреляционной таблицы, имеют вид:


59. Эмпирическая и теоретическая линии регрессии.

Теоретическая линия регрессии может быть рассчитана в этом случае по результатам отдельных наблюдений. Для решения системы нормальных уравнений нам потребуются те же данные: х, у, ху и хг. Мы располагаем данными об объеме производства цемента и объеме основных производственных фондов в 1958 г. Ставится задача: исследовать зависимость между объемом производства цемента (в натуральном выражении) и объемом основных фондов. [1 ]

Чем меньше теоретическая линия регрессии (рассчитанная по уравнению) отклоняется от фактической (эмпиричной), тем меньше средняя ошибка аппроксимации.

Процесс нахождения теоретической линии регрессии представляет собой выравнивание эмпирической линии регрессии на основе метода наименьших квадратов.

Процесс нахождения теоретической линии регрессии называется выравниванием эмпирической линии регрессии и заключается в выборе и обосновании типа; кривой и расчете параметров ее уравнения.

Эмпирическая регрессия строится по данным аналитической или комбинационной группировок и представляет собой зависимость групповых средних значений признака-результата от групповых средних значений признака-фактора. Графическим представлением эмпирической регрессии – ломаная линия, составленная из точек, абсциссами которых являются групповые средние значения признака-фактора, а ординатами – групповые средние значения признака-результата. Число точек равно числу групп в группировке.

Эмпирическая линия регрессии отражает основную тенденцию рассматриваемой зависимости. Если эмпирическая линия регрессии по своему виду приближается к прямой линии, то можно предположить наличие прямолинейной корреляционной связи между признаками. А если линия связи приближается к кривой, то это может быть связано с наличием криволинейной корреляционной связи.
60. Выборочные коэффициенты корреляции и регрессии.

Если зависимость между признаками на графике указывает на линейную корреляцию, рассчитывают коэффициент корреляции r , который позволяет оценить тесноту связи переменных величин, а также выяснить, какая доля изменений признака обусловлена влиянием основного признака, какая – влиянием других факторов. Коэффициент варьирует в пределах от –1 до +1. Если r =0, то связь между признаками отсутствует. Равенство r =0 говорит лишь об отсутствии линейной корреляционной зависимости, но не вообще об отсутствии корреляционной, а тем более статистической зависимости. Если r = ±1, то это означает наличие полной (функциональной) связи. При этом все наблюдаемые значения располагаются на линии регрессии, которая представляет собой прямую.
Практическая значимость коэффициента корреляции определяется его величиной, возведенной в квадрат, получившая название коэффициента детерминации.
Регрессия, аппроксимируемая (приближенно описывающаяся) линейной функцией y = kX + b. Для регрессии У на X уравнение регрессии: `y x = ryx X + b; (1). Угловой коэффициент ryx прямой регрессии Y на X называется коэффициентом регрессии Y на X.

Если уравнение (1) отыскивается по выборочным данным, то оно называется выборочным уравнением регрессии . Соответственно, ryx - выборочный коэффициент регрессии Y на X, а b - выборочный свободный член уравнения. Коэффициент регрессии измеряет вариацию Y, приходящуюся на единицу вариации X. Параметры уравнения регрессии (коэффициенты ryx и b) находятся методом наименьших квадратов.
61. Оценка значимости коэффициента корреляции и тесноты корреляционной связи в генеральной совокупности

Значимость коэффициентов корреляции проверяемся по критерию Стьюдента:

где - среднеквадратическая ошибка коэффициента корреляции, которая определяется по формуле:

Если расчетное значение (выше табличного, то можно сделать заключение о том, что величина коэффициента корреляции является значимой. Табличные значения t находят по таблице значений критериев Стьюдента. При этом учитываются количество степеней свободы (V = п - 1)и уровень доверительной вероятности (в экономических расчетах обычно 0,05 или 0,01). В нашем примере количество степеней свободы равно: п - 1 = 40 - 1 = 39. При уровне доверительной вероятности Р = 0,05; t = 2,02. Поскольку (фактическое во всех случаях выше t-табличного, связь между результативным и факторными показателями является надежной, а величина коэффициентов корреляции - значимой.

Оценка коэффициента корреляции , вычисленная по ограниченной выборке, практически всегда отличается от нуля. Но из этого еще не следует, что коэффициент корреляции генеральной совокупности также отличен от нуля. Требуется оценить значимость выборочной величины коэффициента или, в соответствии с постановкой задач проверки статистических гипотез, проверить гипотезу о равенстве нулю коэффициента корреляции. Если гипотеза Н 0 о равенстве нулю коэффициента корреляции будет отвергнута, то выборочный коэффициент значим, а соответствующие величины связаны линейным соотношением. Если гипотеза Н 0 будет принята, то оценка коэффициента не значима, и величины линейно не связаны друг с другом (если по физическим соображениям факторы могут быть связаны, то лучше говорить о том, что по имеющимся ЭД эта взаимосвязь не установлена). Проверка гипотезы о значимости оценки коэффициента корреляции требует знания распределения этой случайной величины. Распределение величины  ik изучено только для частного случая, когда случайные величины U j и U k распределены по нормальному закону.

В качестве критерия проверки нулевой гипотезы Н 0 применяют случайную величину . Если модуль коэффициента корреляции относительно далек от единицы, то величина t при справедливости нулевой гипотезы распределена по закону Стьюдента с n – 2 степенями свободы. Конкурирующая гипотеза Н 1 соответствует утверждению, что значение  ik не равно нулю (больше или меньше нуля). Поэтому критическая область двусторонняя.
62. Вычисление выборочного коэффициента корреляции и построение выборочного уравнения прямой линии регрессии.

Выборочный коэффициент корреляции находится по формуле

где - выборочные средние квадратические отклонения величин и .

Выборочный коэффициент корреляции показывает тесноту линейной связи между и : чем ближе к единице, тем сильнее линейная связь между и .

Простая линейная регрессия позволяет найти линейную зависимость между одной входной и одной выходной переменными. Для этого определяется уравнение регрессии - это модель, отражающая зависимость значений Y, зависимой величины Y от значений х, независимой переменной х и генеральной совокупности, описывается уровнением:

где А0 - свободный член уравнения регрессии;

А1 - коэффициент уравнения регрессии

Затем строится соответствующая прямая, называемая линией регрессии. Коэффициенты А0 и А1, называемые также параметрами модели, выбираются таким образом, чтобы сумма квадратов отклонений точек, соответствующих реальным наблюдениям данных, от линии регрессии, была бы минимальной. Подбор коэффициентов производится по методу наименьших квадратов. Иными словами, простая линейная регрессия описывает линейную модель, которая наилучшим образом аппроксимирует зависимость между одной входной и одной выходной переменными.

Вычисление коэффициентов уравнения регрессии

Систему уравнений (7.8) на основе имеющихся ЭД однозначно решить невозможно, так как количество неизвестных всегда больше количества уравнений. Для преодоления этой проблемы нужны дополнительные допущения. Здравый смысл подсказывает: желательно выбрать коэффициенты полинома так, чтобы обеспечить минимум ошибки аппроксимации ЭД. Могут применяться различные меры для оценки ошибок аппроксимации. В качестве такой меры нашла широкое применение среднеквадратическая ошибка. На ее основе разработан специальный метод оценки коэффициентов уравнений регрессии – метод наименьших квадратов (МНК). Этот метод позволяет получить оценки максимального правдоподобия неизвестных коэффициентов уравнения регрессии при нормальном распределения вариант, но его можно применять и при любом другом распределении факторов.

В основе МНК лежат следующие положения:

· значения величин ошибок и факторов независимы, а значит, и некоррелированы, т.е. предполагается, что механизмы порождения помехи не связаны с механизмом формирования значений факторов;

· математическое ожидание ошибки ε должно быть равно нулю (постоянная составляющая входит в коэффициент a 0 ), иначе говоря, ошибка является центрированной величиной;

· выборочная оценка дисперсии ошибки должна быть минимальна.

Рассмотрим применение МНК применительно к линейной регрессии стандартизованных величин. Для центрированных величин u j коэффициент a 0 равен нулю, тогда уравнения линейной регрессии

. (7.9)

Здесь введен специальный знак "^", обозначающий значения показателя, рассчитанные по уравнению регрессии, в отличие от значений, полученных по результатам наблюдений.

По МНК определяются такие значения коэффициентов уравнения регрессии, которые обеспечивают безусловный минимум выражению

Минимум находится приравниванием нулю всех частных производных выражения (7.10), взятых по неизвестным коэффициентам, и решением системы уравнений

(7.11)

Последовательно проведя преобразования и используя введенные ранее оценки коэффициентов корреляции

. (7.12)

Итак, получено т –1 линейных уравнений, что позволяет однозначно вычислить значения a 2 , a 3 , …, a т .

Если же линейная модель неточна или параметры измеряются неточно, то и в этом случае МНК позволяет найти такие значения коэффициентов, при которых линейная модель наилучшим образом описывает реальный объект в смысле выбранного критерия среднеквадратического отклонения.

Когда имеется только один параметр, уравнение линейной регрессии примет вид

Коэффициент a 2 находится из уравнения

Тогда, учитывая, что r 2,2 = 1, искомый коэффициент

a 2 = r y ,2 . (7.13)

Соотношение (7.13) подтверждает ранее высказанное утверждение, что коэффициент корреляции является мерой линейной связи двух стандартизованных параметров.

Подставив найденное значение коэффициента a 2 в выражение для w , с учетом свойств центрированных и нормированных величин, получим минимальное значение этой функции, равное 1– r 2 y ,2 . Величину 1– r 2 y,2 называют остаточной дисперсией случайной величины y относительно случайной величины u 2 . Она характеризует ошибку, которая получается при замене показателя функцией от параметра υ= a 2 u 2 . Только при |r y,2 | = 1 остаточная дисперсия равна нулю, и, следовательно, не возникает ошибки при аппроксимации показателя линейной функцией.

Переходя от центрированных и нормированных значений показателя и параметра

можно получить для исходных величин

Это уравнение также линейно относительно коэффициента корреляции. Нетрудно заметить, что центрирование и нормирование для линейной регрессии позволяет понизить на единицу размерность системы уравнений, т.е. упростить решение задачи определения коэффициентов, а самим коэффициентам придать ясный смысл.

Применение МНК для нелинейных функций практически ничем не отличается от рассмотренной схемы (только коэффициент a0 в исходном уравнении не равен нулю).

Например, пусть необходимо определить коэффициенты параболической регрессии

Выборочная дисперсия ошибки

На ее основе можно получить следующую систему уравнений

После преобразований система уравнений примет вид

Учитывая свойства моментов стандартизованных величин, запишем

Определение коэффициентов нелинейной регрессии основано на решении системы линейных уравнений. Для этого можно применять универсальные пакеты численных методов или специализированные пакеты обработки статистических данных.

С ростом степени уравнения регрессии возрастает и степень моментов распределения параметров, используемых для определения коэффициентов. Так, для определения коэффициентов уравнения регрессии второй степени используются моменты распределения параметров до четвертой степени включительно. Известно, что точность и достоверность оценки моментов по ограниченной выборке ЭД резко снижается с ростом их порядка. Применение в уравнениях регрессии полиномов степени выше второй нецелесообразно.

Качество полученного уравнения регрессии оценивают по степени близости между результатами наблюдений за показателем и предсказанными по уравнению регрессии значениями в заданных точках пространства параметров. Если результаты близки, то задачу регрессионного анализа можно считать решенной. В противном случае следует изменить уравнение регрессии (выбрать другую степень полинома или вообще другой тип уравнения) и повторить расчеты по оценке параметров.

При наличии нескольких показателей задача регрессионного анализа решается независимо для каждого из них.

Анализируя сущность уравнения регрессии, следует отметить следующие положения. Рассмотренный подход не обеспечивает раздельной (независимой) оценки коэффициентов – изменение значения одного коэффициента влечет изменение значений других. Полученные коэффициенты не следует рассматривать как вклад соответствующего параметра в значение показателя. Уравнение регрессии является всего лишь хорошим аналитическим описанием имеющихся ЭД, а не законом, описывающим взаимосвязи параметров и показателя. Это уравнение применяют для расчета значений показателя в заданном диапазоне изменения параметров. Оно ограниченно пригодно для расчета вне этого диапазона, т.е. его можно применять для решения задач интерполяции и в ограниченной степени для экстраполяции.



Главной причиной неточности прогноза является не столько неопределенность экстраполяции линии регрессии, сколько значительная вариация показателя за счет неучтенных в модели факторов. Ограничением возможности прогнозирования служит условие стабильности неучтенных в модели параметров и характера влияния учтенных факторов модели. Если резко меняется внешняя среда, то составленное уравнение регрессии потеряет свой смысл. Нельзя подставлять в уравнение регрессии такие значения факторов, которые значительно отличаются от представленных в ЭД. Рекомендуется не выходить за пределы одной трети размаха вариации параметра как за максимальное, так и за минимальное значения фактора.

Прогноз, полученный подстановкой в уравнение регрессии ожидаемого значения параметра, является точечным. Вероятность реализации такого прогноза ничтожна мала. Целесообразно определить доверительный интервал прогноза. Для индивидуальных значений показателя интервал должен учитывать ошибки в положении линии регрессии и отклонения индивидуальных значений от этой линии. Средняя ошибка прогноза показателя y для фактора х составит

где – средняя ошибка положения линии регрессии в генеральной совокупности при x = x k ;

– оценка дисперсии отклонения показателя от линии регрессии в генеральной совокупности;

x k – ожидаемое значение фактора.

Доверительные границы прогноза, например, для уравнения регрессии (7.14), определяются выражением

Отрицательная величина свободного члена а 0 в уравнении регрессии для исходных переменных означает, что область существования показателя не включает нулевых значений параметров. Если же а 0 > 0 , то область существования показателя включает нулевые значения параметров, а сам коэффициент характеризует среднее значение показателя при отсутствии воздействий параметров.

Задача 7.2. Построить уравнение регрессии для пропускной способности канала по выборке, заданной в табл. 7.1.

Решение. Применительно к указанной выборке построение аналитической зависимости в основной своей части выполнено в рамках корреляционного анализа: пропускная способность зависит только от параметра "соотношение сигнал/шум". Остается подставить в выражение (7.14) вычисленные ранее значения параметров. Уравнение для пропускной способности примет вид

ŷ = 26,47– 0,93×41,68×5,39/6,04+0,93×5,39/6,03×х = – 8,121+0,830х .

Результаты расчетов представлены в табл. 7.5.

Таблица 7.5

N пп Пропускная способность канала Соотношение сигнал/шум Значение функции Погрешность
Y X ŷ ε
26.37 41.98 26.72 -0.35
28.00 43.83 28.25 -0.25
27/83 42.83 27.42 0.41
31.67 47.28 31.12 0.55
23.50 38.75 24.04 -0.54
21.04 35.12 21.03 0.01
16.94 32.07 18.49 -1.55
37.56 54.25 36.90 0.66
18.84 32.70 19.02 -0.18
25.77 40.51 25.50 0.27
33.52 49.78 33.19 0.33
28.21 43.84 28.26 -0.05
28.76 44.03

Изучение корреляционных зависимостей основывается на исследовании таких связей между переменными, при которых значения одной переменной, ее можно принять за зависимую переменную, «в среднем» изменяются в зависимости от того, какие значения принимает другая переменная, рассматриваемая как причина по отношению к зависимой переменной. Действие данной причины осуществляется в условиях сложного взаимодействия различных факторов, вследствие чего проявление закономерности затемняется влиянием случайностей. Вычисляя средние значения результативного признака для данной группы значений признака-фактора, отчасти элиминируется влияние случайностей. Вычисляя параметры теоретической линии связи, производится дальнейшее их элиминирование и получается однозначное (по форме) изменение «y» с изменением фактора «x».

Для исследования стохастических связей широко используется метод сопоставления двух параллельных рядов, метод аналитических группировок, корреляционный анализ, регрессионный анализ и некоторые непараметрические методы. В общем виде задача статистики в области изучения взаимосвязей состоит не только в количественной оценке их наличия, направления и силы связи, но и в определении формы (аналитического выражения) влияния факторных признаков на результативный. Для ее решения применяют методы корреляционного и регрессионного анализа.

ГЛАВА 1. УРАВНЕНИЕ РЕГРЕССИИ: ТЕОРЕТИЧЕСКИЕ ОСНОВЫ

1.1. Уравнение регрессии: сущность и типы функций

Регрессия (лат. regressio- обратное движение, переход от более сложных форм развития к менее сложным) - одно из основных понятий в теории вероятности и математической статистике, выражающее зависимость среднего значения случайной величины от значений другой случайной величины или нескольких случайных величин. Это понятие введено Фрэнсисом Гальтоном в 1886.

Теоретическая линия регрессии - это та линия, вокруг которой группируются точки корреляционного поля и которая указывает основное направление, основную тенденцию связи.

Теоретическая линия регрессии должна отображать изменение средних величин результативного признака «y» по мере изменения величин факторного признака «x» при условии полного взаимопогашения всех прочих – случайных по отношению к фактору «x» - причин. Следовательно, эта линия должна быть проведена так, чтобы сумма отклонений точек поля корреляции от соответствующих точек теоретической линии регрессии равнялась нулю, а сумма квадратов этих отклонений была ба минимальной величиной.

y=f(x) - уравнение регрессии - это формула статистической связи между переменными.

Прямая линия на плоскости (в пространстве двух измерений) задается уравнением y=a+b*х. Более подробно: переменная y может быть выражена через константу (a) и угловой коэффициент (b), умноженный на переменную x. Константу иногда называют также свободным членом, а угловой коэффициент - регрессионным или B-коэффициентом.

Важным этапом регрессионного анализа является определение типа функции, с помощью которой характеризуется зависимость между признаками. Главным основанием должен служить содержательный анализ природы изучаемой зависимости, ее механизма. Вместе с тем теоретически обосновать форму связи каждого из факторов с результативным показателем можно далеко не всегда, поскольку исследуемые социально-экономические явления очень сложны и факторы, формирующие их уровень, тесно переплетаются и взаимодействуют друг с другом. Поэтому на основе теоретического анализа нередко могут быть сделаны самые общие выводы относительно направления связи, возможности его изменения в исследуемой совокупности, правомерности использования линейной зависимости, возможного наличия экстремальных значений и т.п. Необходимым дополнением такого рода предположений должен быть анализ конкретных фактических данных.

Приблизительно представление о линии связи можно получить на основе эмпирической линии регрессии. Эмпирическая линия регрессии обычно является ломанной линией, имеет более или менее значительный излом. Объясняется это тем, что влияние прочих неучтенных факторов, оказывающих воздействие на вариацию результативного признака, в средних погашается неполностью, в силу недостаточно большого количества наблюдений, поэтому эмпирической линией связи для выбора и обоснования типа теоретической кривой можно воспользоваться при условии, что число наблюдений будет достаточно велико.

Одним из элементов конкретных исследований является сопоставление различных уравнений зависимости, основанное на использовании критериев качества аппроксимации эмпирических данных конкурирующими вариантами моделей Наиболее часто для характеристики связей экономических показателей используют следующие типы функций:

1. Линейная:

2. Гиперболическая:

3. Показательная:

4. Параболическая:

5. Степенная:

6. Логарифмическая:

7. Логистическая:

Модель с одной объясняющей и одной объясняемой переменными – модель парной регрессии. Если объясняющих (факторных) переменных используется две или более, то говорят об использовании модели множественной регрессии. При этом, в качестве вариантов могут быть выбраны линейная, экспоненциальная, гиперболическая, показательная и другие виды функций, связывающие эти переменные.

Для нахождения параметров а и b уравнения регрессии используют метод наименьших квадратов. При применении метода наименьших квадратов для нахождения такой функции, которая наилучшим образом соответствует эмпирическим данным, считается, что сумка квадратов отклонений эмпирических точек от теоретической линии регрессии должна быть величиной минимальной.

Критерий метода наименьших квадратов можно записать таким образом:

Следовательно, применение метода наименьших квадратов для определения параметров a и b прямой, наиболее соответствующей эмпирическим данным, сводится к задаче на экстремум.

Относительно оценок можно сделать следующие выводы:

1. Оценки метода наименьших квадратов являются функциями выборки, что позволяет их легко рассчитывать.

2. Оценки метода наименьших квадратов являются точечными оценками теоретических коэффициентов регрессии.

3. Эмпирическая прямая регрессии обязательно проходит через точку x, y.

4. Эмпирическое уравнение регрессии построено таким образом, что сумма отклонений

.

Графическое изображение эмпирической и теоретической линии связи представлено на рисунке 1.


Параметр b в уравнении – это коэффициент регрессии. При наличии прямой корреляционной зависимости коэффициент регрессии имеет положительное значение, а в случае обратной зависимости коэффициент регрессии – отрицательный. Коэффициент регрессии показывает на сколько в среднем изменяется величина результативного признака «y» при изменении факторного признака «x» на единицу. Геометрически коэффициент регрессии представляет собой наклон прямой линии, изображающей уравнение корреляционной зависимости, относительно оси «x» (для уравнения

).

Раздел многомерного статистического анализа, посвященный восстановлению зависимостей, называется регрессионным анализом. Термин «линейный регрессионный анализ» используют, когда рассматриваемая функция линейно зависит от оцениваемых параметров (от независимых переменных зависимость может быть произвольной). Теория оценивания

неизвестных параметров хорошо развита именно в случае линейного регрессионного анализа. Если же линейности нет и нельзя перейти к линейной задаче, то, как правило, хороших свойств от оценок ожидать не приходится. Продемонстрируем подходы в случае зависимостей различного вида. Если зависимость имеет вид многочлена (полинома). Если расчёт корреляции характеризует силу связи между двумя переменными, то регрессионный анализ служит для определения вида этой связи и дает возможность для прогнозирования значения одной (зависимой) переменной отталкиваясь от значения другой (независимой) переменной. Для проведения линейного регрессионного анализа зависимая переменная должна иметь интервальную (или порядковую) шкалу. В то же время, бинарная логистическая регрессия выявляет зависимость дихотомической переменной от некой другой переменной, относящейся к любой шкале. Те же условия применения справедливы и для пробит-анализа. Если зависимая переменная является категориальной, но имеет более двух категорий, то здесь подходящим методом будет мультиномиальная логистическая регрессия можно анализировать и нелинейные связи между переменными, которые относятся к интервальной шкале. Для этого предназначен метод нелинейной регрессии.

При линейном типе связи между двумя изучаемыми признаками кроме расчета корреляций применяется расчет коэффициента регрессии.

В случае прямолинейной корреляционной связи каждому из изменений одного признака соответствует вполне определенное изменение другого признака. Однако коэффициент корреляции показывает эту связь лишь в относительных величинах - в долях единицы. С помощью же регрессионного анализа эту величину связи получают в именованных единицах. Та величина, на которую в среднем изменяется первый признак при изменении второго на единицу измерения, называется коэффициентом регрессии.

В отличие от корреляционного регрессионный анализ дает более широкую информацию, поскольку вычислением двух коэффициентов регрессии Rx/y и Rу/х возможно определить как зависимость первого признака от второго, так и второго от первого. Выражение регрессионной связи с помощью уравнения позволяет по определенному значению одного признака установить значение другого признака.

Коэффициент регрессии R представляет собой произведение коэффициента корреляции на отношение квадратических отклонений, вычисленных для каждого признака. Рассчитывается он по формуле

где, R - коэффициент регрессии; SХ - среднее квадратическое отклонение первого признака, который изменяется в связи с изменением второго; SУ - среднее квадратическое отклонение второго признака в связи с изменением которого изменяется первый признак; r - коэффициент корреляции между этими признаками; х - функция; у -аргумент.

По этой формуле определяется величина значения х при изменении у на единицу измерения. При необходимости обратного расчета можно найти величину у при изменении х на единицу измерения по формуле:


В этом случае активная роль в изменении одного признака по отношению к другому меняется, по сравнению с предыдущей формулой аргумент становится функцией и наоборот. Величины SX и SY принимаются в именованном выражении.

Между значениями г и R имеется четкая взаимосвязь, выражающаяся в том, что произведение регрессии х по у на регрессию у по х равно квадрату коэффициента корреляции, т. е.

Rx/y * Ry/x = r2

Это свидетельствует, что коэффициент корреляции представляет собой среднюю геометрическую из обоих значений коэффициентов регрессии данной выборки. Данная формула может быть использована для проверки правильности расчетов.

При обработке цифрового материала на счетных машинах могут применяться развернутые формулы коэффициента регрессии:

R или


Для коэффициента регрессии может быть рассчитана его ошибка репрезентативности. Ошибка коэффициента регрессии равна ошибке коэффициента корреляции, умноженной на отношение квадратических отношений:

Критерий достоверности коэффициента регрессии вычисляется по обычной формуле:

в итоге он равен критерию достоверности коэффициента корреляции:

Достоверность величины tR устанавливается по таблице Стьюдента при  = n - 2, где n - число пар наблюдений.

Криволинейная регрессия.

РЕГРЕССИЯ, КРИВОЛИНЕЙНАЯ . Любая нелинейная регрессия, в которой уравнение регрессии для изменений в одной переменной (у) как функции t изменений в другой (х) является квадратичным, кубическим или уравнение более высокого порядка. Хотя математически всегда возможно получить уравнение регрессии, которое будет соответствовать каждой "загогулине" кривой, большинство этих пертурбаций возникает в результате ошибок в составлении выборки или измерении, и такое "совершенное" соответствие ничего не дает. Не всегда легко определить, соответствует ли криволинейная регрессия набору данных, хотя существуют статистические тесты для определения того, значительно ли увеличивает каждая более высокая степень уравнения степ совпадения этого набора данных.

Аппроксимация кривой выполняется тем же путем с использованием метода наименьших квадратов, что и выравнивание по прямой линии. Линия регрессии должна удовлетворять условию минимума суммы квадратов расстояний до каждой точки корреляционного поля. В данном случае в уравнении (1) у представляет собой расчетное значение функции, определенное при помощи уравнения выбранной криволинейной связи по фактическим значениям х j. Например, если для аппроксимации связи выбрана парабола второго порядка, то y = а + b x + cx2, (14) .а разность между точкой, лежащей на кривой, и данной точкой корреляционного поля при соответствующем аргументе можно записать аналогично уравнению (3) в виде yj = yj (a + bx + cx2) (15) При этом сумма квадратов расстояний от каждой точки корреляционного поля до новой линии регрессии в случае параболы второго порядка будет иметь вид: S 2 = yj 2 = 2 (16) Исходя из условия минимума этой суммы, частные производные S 2 по а, b и с приравниваются к нулю. Выполнив необходимые преобразования, получим систему трех уравнений с тремя неизвестными для определения a, b и с. , y = m a + b x + c x 2 yx = a x + b x 2 + c x 2. yx2 = a x 2 + b x 3 + c x4 . (17). Решая систему уравнений относительно a, b и с, находим численные значения коэффициентов регрессии. Величины y, x, x2, yx, yx2, x3, x4.находятся непосредственно по данным производственных измерений. Оценкой тесноты связи при криволинейной зависимости служит теоретическое корреляционное отношение xу, представляющее собой корень квадратный из соотношения двух дисперсий: среднего квадрата р2 отклонений расчетных значений y" j функции по найденному уравнению регрессии от среднеарифметического значения Y величины y к среднему квадрату отклонений y2 фактических значений функции y j от ее среднеарифметического значения: xу = { р2 / y2 } 1/2 = { (y" j - Y)2 / (y j - Y)2 } 1/2 (18) Квадрат корреляционного отношения xу2 показывает долю полной изменчивости зависимой переменной у, обусловленную изменчивостью аргумента х. Этот показатель называется коэффициентом детерминации. В отлично от коэффициента корреляции величина корреляционного отношения может принимать только положительные значения от 0 до 1. При полном отсутствии связи корреляционное отношение равно нулю, при наличии функциональной связи оно равно единице, а при наличии регрессионной связи различной тесноты корреляционное отношение принимает значения между нулем и единицей. Выбор типа кривой имеет большое значение в регрессионном анализе, поскольку от вида выбранной взаимосвязи зависит точность аппроксимации и статистические оценки тесноты связи. Наиболее простой метод выбора типа кривой состоит в построении корреляционных полей и в подборе соответствующих типов регрессионных уравнений по расположению точек на этих полях. Методы регрессионного анализа позволяют отыскивать численные значения коэффициентов регрессии для сложных видов взаимосвязи параметров, описываемых, например, полиномами высоких степеней. Часто вид кривой может быть определен на основе физической сущности рассматриваемого процесса или явления. Полиномы высоких степеней имеет смысл применять для описания быстро меняющихся процессов в том случае, если пределы колебания параметров этих процессов значительные. Применительно к исследованиям металлургического процесса достаточно использовать кривые низших порядков, например параболу второго порядка. Эта кривая может иметь один экстремум, что, как показала практика, вполне достаточно для описания различных характеристик металлургического процесса. Результаты расчетов параметров парной корреляционной взаимосвязи были бы достоверны н представляли бы практическую ценность в том случае, если бы используемая информация была получена для условий широких пределов колебаний аргумента при постоянстве всех прочих параметров процесса. Следовательно, методы исследования парной корреляционной взаимосвязи параметров могут быть использованы для решения практических задач лишь тогда, когда существует уверенность в отсутствии других серьезных влияний на функцию, кроме анализируемого аргумента. В производственных условиях вести процесс таким образом продолжительное время невозможно. Однако если иметь информацию об основных параметрах процесса, влияющих на его результаты, то математическим путем можно исключить влияние этих параметров и выделить в “чистом виде” взаимосвязь интересующей нас функции и аргумента. Такая связь называется частной, или индивидуальной. Для ее определения используется метод множественной регрессии.

Корреляционное отношение.

Корреляционное отношение и индекс корреляции - это числовые характеристики, тесно связанные понятием случайной величины, а точнее с системой случайных величин. Поэтому для введения и определения их значения и роли необходимо пояснить понятие системы случайных величин и некоторые свойства присущие им.

Два или более случайные величины, описывающих некоторое явление называют системой или комплексом случайных величин.

Систему нескольких случайных величин X, Y, Z, …, W принято обозначать через (X, Y, Z, …, W).

Например, точка на плоскости описывается не одной координатой, а двумя, а в пространстве - даже тремя.

Свойства системы нескольких случайных величин не исчерпываются свойствами отдельных случайных величин, входящих в систему, а включают также взаимные связи (зависимости) между случайными величинами. Поэтому при изучении системы случайных величин следует обращать внимание на характер и степень зависимости. Эта зависимость может быть более или менее ярко выраженной, более или менее тесной. А в других случаях случайные величины оказаться практически независимыми.

Случайная величина Y называется независимой от случайной величины Х, если закон распределения случайной величины Y не зависит от того какое значение приняла величина Х.

Следует отметить, что зависимость и независимость случайных величин есть всегда явление взаимное: если Y не зависит от Х, то и величина Х не зависит от Y. Учитывая это, можно привести следующее определение независимости случайных величин.

Случайные величины Х и Y называются независимыми, если закон распределения каждой из них не зависит от того, какое значение приняла другая. В противном случае величины Х и Y называются зависимыми.

Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями.

Понятие "зависимости" случайных величин, которым пользуются в теории вероятностей, несколько отличается от обычного понятия "зависимости" величин, которым пользуются в математике. Так, математик под "зависимостью" подразумевает только один тип зависимости - полную, жесткую, так называемую функциональную зависимость. Две величины Х и Y называются функционально зависимыми, если, зная значение одного из них, можно точно определить значение другой.

В теории вероятностей встречаются несколько с иным типом зависимости - вероятностной зависимостью. Если величина Y связана с величиной Х вероятностной зависимостью, то, зная значение Х, нельзя точно указать значение Y, а можно указать её закон распределения, зависящий от того, какое значение приняла величина Х.

Вероятностная зависимость может быть более или менее тесной; по мере увеличения тесноты вероятностной зависимости она все более приближается к функциональной. Т.о., функциональную зависимость можно рассматривать как крайний, предельный случай наиболее тесной вероятностной зависимости. Другой крайний случай - полная независимость случайных величин. Между этими двумя крайними случаями лежат все градации вероятностной зависимости - от самой сильной до самой слабой.

Вероятностная зависимость между случайными величинами часто встречается на практике. Если случайные величины Х и Y находятся в вероятностной зависимости, то это не означает, что с изменением величины Х величина Y изменяется вполне определенным образом; это лишь означает, что с изменением величины Х величина Y имеет тенденцию также изменяться (возрастать или убывать при возрастании Х). Эта тенденция соблюдается лишь в общих чертах, а в каждом отдельном случае возможны отступления от неё.

Что такое регрессия?

Рассмотрим две непрерывные переменные x=(x 1 , x 2 , .., x n), y=(y 1 , y 2 , ..., y n).

Разместим точки на двумерном графике рассеяния и скажем, что мы имеем линейное соотношение , если данные аппроксимируются прямой линией.

Если мы полагаем, что y зависит от x , причём изменения в y вызываются именно изменениями в x , мы можем определить линию регрессии (регрессия y на x ), которая лучше всего описывает прямолинейное соотношение между этими двумя переменными.

Статистическое использование слова "регрессия" исходит из явления, известного как регрессия к среднему, приписываемого сэру Френсису Гальтону (1889).

Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей "регрессировал" и "двигался вспять" к среднему росту всех отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).

Линия регрессии

Математическое уравнение, которое оценивает линию простой (парной) линейной регрессии:

x называется независимой переменной или предиктором.

Y - зависимая переменная или переменная отклика. Это значение, которое мы ожидаем для y (в среднем), если мы знаем величину x , т.е. это «предсказанное значение y »

  • a - свободный член (пересечение) линии оценки; это значение Y , когда x=0 (Рис.1).
  • b - угловой коэффициент или градиент оценённой линии; она представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем x на одну единицу.
  • a и b называют коэффициентами регрессии оценённой линии, хотя этот термин часто используют только для b .

Парную линейную регрессию можно расширить, включив в нее более одной независимой переменной; в этом случае она известна как множественная регрессия .

Рис.1. Линия линейной регрессии, показывающая пересечение a и угловой коэффициент b (величину возрастания Y при увеличении x на одну единицу)

Метод наименьших квадратов

Мы выполняем регрессионный анализ, используя выборку наблюдений, где a и b - выборочные оценки истинных (генеральных) параметров, α и β , которые определяют линию линейной регрессии в популяции (генеральной совокупности).

Наиболее простым методом определения коэффициентов a и b является метод наименьших квадратов (МНК).

Подгонка оценивается, рассматривая остатки (вертикальное расстояние каждой точки от линии, например, остаток = наблюдаемому y - предсказанный y , Рис. 2).

Линию лучшей подгонки выбирают так, чтобы сумма квадратов остатков была минимальной.

Рис. 2. Линия линейной регрессии с изображенными остатками (вертикальные пунктирные линии) для каждой точки.

Предположения линейной регрессии

Итак, для каждой наблюдаемой величины остаток равен разнице и соответствующего предсказанного Каждый остаток может быть положительным или отрицательным.

Можно использовать остатки для проверки следующих предположений, лежащих в основе линейной регрессии:

  • Остатки нормально распределены с нулевым средним значением;

Если допущения линейности, нормальности и/или постоянной дисперсии сомнительны, мы можем преобразовать или и рассчитать новую линию регрессии, для которой эти допущения удовлетворяются (например, использовать логарифмическое преобразование или др.).

Аномальные значения (выбросы) и точки влияния

"Влиятельное" наблюдение, если оно опущено, изменяет одну или больше оценок параметров модели (т.е. угловой коэффициент или свободный член).

Выброс (наблюдение, которое противоречит большинству значений в наборе данных) может быть "влиятельным" наблюдением и может хорошо обнаруживаться визуально, при осмотре двумерной диаграммы рассеяния или графика остатков.

И для выбросов, и для "влиятельных" наблюдений (точек) используют модели, как с их включением, так и без них, обращают внимание на изменение оценки (коэффициентов регрессии).

При проведении анализа не стоит отбрасывать выбросы или точки влияния автоматически, поскольку простое игнорирование может повлиять на полученные результаты. Всегда изучайте причины появления этих выбросов и анализируйте их.

Гипотеза линейной регрессии

При построении линейной регрессии проверяется нулевая гипотеза о том, что генеральный угловой коэффициент линии регрессии β равен нулю.

Если угловой коэффициент линии равен нулю, между и нет линейного соотношения: изменение не влияет на

Для тестирования нулевой гипотезы о том, что истинный угловой коэффициент равен нулю можно воспользоваться следующим алгоритмом:

Вычислить статистику критерия, равную отношению , которая подчиняется распределению с степенями свободы, где стандартная ошибка коэффициента


,

- оценка дисперсии остатков.

Обычно если достигнутый уровень значимости нулевая гипотеза отклоняется.


где процентная точка распределения со степенями свободы что дает вероятность двустороннего критерия

Это тот интервал, который содержит генеральный угловой коэффициент с вероятностью 95%.

Для больших выборок, скажем, мы можем аппроксимировать значением 1,96 (то есть статистика критерия будет стремиться к нормальному распределению)

Оценка качества линейной регрессии: коэффициент детерминации R 2

Из-за линейного соотношения и мы ожидаем, что изменяется, по мере того как изменяется , и называем это вариацией, которая обусловлена или объясняется регрессией. Остаточная вариация должна быть как можно меньше.

Если это так, то большая часть вариации будет объясняться регрессией, а точки будут лежать близко к линии регрессии, т.е. линия хорошо соответствует данным.

Долю общей дисперсии , которая объясняется регрессией называют коэффициентом детерминации , обычно выражают через процентное соотношение и обозначают R 2 (в парной линейной регрессии это величина r 2 , квадрат коэффициента корреляции), позволяет субъективно оценить качество уравнения регрессии.

Разность представляет собой процент дисперсии который нельзя объяснить регрессией.

Нет формального теста для оценки мы вынуждены положиться на субъективное суждение, чтобы определить качество подгонки линии регрессии.

Применение линии регрессии для прогноза

Можно применять регрессионную линию для прогнозирования значения по значению в пределе наблюдаемого диапазона (никогда не экстраполируйте вне этих пределов).

Мы предсказываем среднюю величину для наблюдаемых, которые имеют определенное значение путем подстановки этого значения в уравнение линии регрессии.

Итак, если прогнозируем как Используем эту предсказанную величину и ее стандартную ошибку, чтобы оценить доверительный интервал для истинной средней величины в популяции.

Повторение этой процедуры для различных величин позволяет построить доверительные границы для этой линии. Это полоса или область, которая содержит истинную линию, например, с 95% доверительной вероятностью.

Простые регрессионные планы

Простые регрессионные планы содержат один непрерывный предиктор. Если существует 3 наблюдения со значениями предиктора P , например, 7, 4 и 9, а план включает эффект первого порядка P , то матрица плана X будет иметь вид

а регрессионное уравнение с использованием P для X1 выглядит как

Y = b0 + b1 P

Если простой регрессионный план содержит эффект высшего порядка для P , например квадратичный эффект, то значения в столбце X1 в матрице плана будут возведены во вторую степень:

а уравнение примет вид

Y = b0 + b1 P2

Сигма -ограниченные и сверхпараметризованные методы кодирования не применяются по отношению к простым регрессионным планам и другим планам, содержащим только непрерывные предикторы (поскольку, просто не существует категориальных предикторов). Независимо от выбранного метода кодирования, значения непрерывных переменных увеличиваются в соответствующей степени и используются как значения для переменных X . При этом перекодировка не выполняется. Кроме того, при описании регрессионных планов можно опустить рассмотрение матрицы плана X , а работать только с регрессионным уравнением.

Пример: простой регрессионный анализ

Этот пример использует данные, представленные в таблице:

Рис. 3. Таблица исходных данных.

Данные составлены на основе сравнения переписей 1960 и 1970 в произвольно выбранных 30 округах. Названия округов представлены в виде имен наблюдений. Информация относительно каждой переменной представлена ниже:

Рис. 4. Таблица спецификаций переменных.

Задача исследования

Для этого примера будут анализироваться корреляция уровня бедности и степень, которая предсказывает процент семей, которые находятся за чертой бедности. Следовательно мы будем трактовать переменную 3 (Pt_Poor ) как зависимую переменную.

Можно выдвинуть гипотезу: изменение численности населения и процент семей, которые находятся за чертой бедности, связаны между собой. Кажется разумным ожидать, что бедность ведет к оттоку населения, следовательно, здесь будет отрицательная корреляция между процентом людей за чертой бедности и изменением численности населения. Следовательно мы будем трактовать переменную 1 (Pop_Chng ) как переменную-предиктор.

Просмотр результатов

Коэффициенты регрессии

Рис. 5. Коэффициенты регрессии Pt_Poor на Pop_Chng.

На пересечении строки Pop_Chng и столбца Парам. не стандартизованный коэффициент для регрессии Pt_Poor на Pop_Chng равен -0.40374 . Это означает, что для каждого уменьшения численности населения на единицу, имеется увеличение уровня бедности на.40374. Верхний и нижний (по умолчанию) 95% доверительные пределы для этого не стандартизованного коэффициента не включают ноль, так что коэффициент регрессии значим на уровне p<.05 . Обратите внимание на не стандартизованный коэффициент, который также является коэффициентом корреляции Пирсона для простых регрессионных планов, равен -.65, который означает, что для каждого уменьшения стандартного отклонения численности населения происходит увеличение стандартного отклонения уровня бедности на.65.

Распределение переменных

Коэффициенты корреляции могут стать существенно завышены или занижены, если в данных присутствуют большие выбросы. Изучим распределение зависимой переменной Pt_Poor по округам. Для этого построим гистограмму переменной Pt_Poor .

Рис. 6. Гистограмма переменной Pt_Poor.

Как вы можете заметить, распределение этой переменной заметно отличается от нормального распределения. Тем не менее, хотя даже два округа (два правых столбца) имеют высокий процент семей, которые находятся за чертой бедности, чем ожидалось в случае нормального распределения, кажется, что они находятся "внутри диапазона."

Рис. 7. Гистограмма переменной Pt_Poor.

Это суждение в некоторой степени субъективно. Эмпирическое правило гласит, что выбросы необходимо учитывать, если наблюдение (или наблюдения) не попадают в интервал (среднее ± 3 умноженное на стандартное отклонение). В этом случае стоит повторить анализ с выбросами и без, чтобы убедиться, что они не оказывают серьезного эффекта на корреляцию между членами совокупности.

Диаграмма рассеяния

Если одна из гипотез априори о взаимосвязи между заданными переменными, то ее полезно проверить на графике соответствующей диаграммы рассеяния.

Рис. 8. Диаграмма рассеяния.

Диаграмма рассеяния показывает явную отрицательную корреляцию (-.65 ) между двумя переменными. На ней также показан 95% доверительный интервал для линии регрессии, т.е., с 95% вероятностью линия регрессии проходит между двумя пунктирными кривыми.

Критерии значимости

Рис. 9. Таблица, содержащая критерии значимости.

Критерий для коэффициента регрессии Pop_Chng подтверждает, что Pop_Chng сильно связано с Pt_Poor , p<.001 .

Итог

На этом примере было показано, как проанализировать простой регрессионный план. Была также представлена интерпретация не стандартизованных и стандартизованных коэффициентов регрессии. Обсуждена важность изучения распределения откликов зависимой переменной, продемонстрирована техника определения направления и силы взаимосвязи между предиктором и зависимой переменной.